W+ jets and heavy flavour production

All-D0 meeting, July 23rd 2004

John Campbell

Argonne National Laboratory

Outline

- The MCFM Monte Carlo
 - ⋆ overview of the program
 - ★ implementation of vector boson + jets processes
- NLO predictions for W+2 jets and $Wb\bar{b}$
 - ⋆ basic cross-sections
 - * theoretical similarities between the two processes
 - * effect of NLO on distributions
- Single-tagged events
- Summary

Heavy flavour as a background

- Events containing jets that are heavy-quark tagged are important for understanding both old and new physics:
 - ★ Top decays $t \rightarrow W + b$

 \star Much new physics couples preferentially to massive quarks, for instance a light Higgs with $m_H < 140$ GeV decaying to $b\bar{b}$

Top processes

 \longrightarrow 2 jets, only one is a b

 \longrightarrow ≥ 2 jets, two are b's

MCFM overview

JC and R.K. Ellis

 \blacksquare Parton level cross-sections predicted to NLO in α_S

$$\begin{array}{|c|c|c|}\hline p\bar{p} \to W^{\pm}/Z & p\bar{p} \to W^{+} + W^{-} \\ p\bar{p} \to W^{\pm} + Z & p\bar{p} \to Z + Z \\ p\bar{p} \to W^{\pm} + \gamma & p\bar{p} \to W^{\pm}/Z + H \\ p\bar{p} \to W^{\pm} + g^{\star} (\to b\bar{b}) & p\bar{p} \to Zb\bar{b} \\ p\bar{p} \to W^{\pm}/Z + 1 \text{ jet} & p\bar{p} \to W^{\pm}/Z + 2 \text{ jets} \\ p\bar{p}(gg) \to H & p\bar{p}(gg) \to H + 1 \text{ jet} \\ p\bar{p}(VV) \to H + 2 \text{ jets} & \end{array}$$

- low particle multiplicity (no showering)
- no hadronization
- hard to model detector effects
- \oplus less sensitivity to μ_R , μ_F
- rates are better normalized
- fully differential distributions

MCFM Information

Version 3.4.5 available at:

```
http://mcfm.fnal.gov
```

- Improvements over previous releases:
 - ⋆ more processes
 - ⋆ better user interface
 - ★ support for PDFLIB, Les Houches PDF accord
 (→ PDF uncertainties)
 - ⋆ ntuples as well as histograms
 - ⋆ unweighted events
 - ⋆ Pythia/Les Houches generator interface (LO)
 - ⋆ 'Behind-the-scenes' efficiency
- Coming attractions:
 - \star more processes (Z + b, single top, ...)
 - ★ separate variation of factorization and renormalization scales

Vector boson + jets in MCFM

- Many diagrams, sensitive to all parton PDF's
- NLO corrections are separated into two classes:
- REAL extra parton radiation, e.g. (W/Z + 2 jets)

■ VIRTUAL loop diagrams:

Vector boson + heavy flavour in MCFM

In lowest order b-quark pairs are produced in association with W's by gluon splitting alone:

- Beyond LO, the *b*-quark is treated as a massless particle in MCFM
 - \star a finite cross-section requires a cut on the b-quark p_T
 - \star this means that this calculation is not suitable for estimating the rate with only a single b tag

Mass effects

- Lowest order comparison of dijet mass and leading jet p_T distributions for $Wb\bar{b}$
 - \star $m_b = 4.75 \text{ GeV}$ (lowest order only)
 - \star $m_b = 0$ (can be calculated to NLO)

Overall the cross section decreases by approximately 10% when including the mass. Kinematic distributions are not much affected away from regions of low $p_T(b)$.

Heavy flavour beyond lowest order

■ At NLO, the simple kinematics can be altered:

■ For heavy flavour production in association with a Z, the b-quarks do not have be produced by gluon splitting. Beyond LO, the difference is further magnified.

W/Z+ jet cross-sections

- The W/Z+2 jet cross-section has only recently been calculated at NLO and should provide an interesting test of QCD (cf. many Run I studies using the W/Z+1 jet calculation in DYRAD)
- For instance, the theoretical prediction for the number of events containing 2 jets divided by the number containing only 1 is greatly improved.

Scale dependence

■ Usual scale dependence, much reduced at NLO. Corrections are modest at typical scales, $\mu \sim M_W$.

- Exclusive cross-sections stable over a large range of scales.
- Inclusive result (allows $Wb\bar{b}j$, W+3 jet configurations) shows more scale dependence, as expected (but still better than LO).

Jet p_T dependence

Increasing the minimum jet p_T reduces the 3 jet contribution compared to the 2 jet one, so the behaviour of the inclusive cross-section improves.

Scale dependence of *K*-factors

- Strong scale dependence.
- The $Wb\bar{b}$ K-factor varies greatly with the minimum jet p_T , whereas the W+2 jets one does not.

dotted: W + 2 jets

solid: $W + b\bar{b}$

Scale dependence has a similar shape for both processes.

K-factor ratio

Important for CDF's "Method 2". Essentially, is a lowest order estimate of $(Wb\bar{b}/W + 2 \text{ jets})$ reproduced at NLO?

- A qualified "yes" it is for scale choices around 50 GeV or greater and p_T cuts of about 15 GeV or greater.
- \blacksquare As the jet p_T cut is lowered, the ratio gets worse (increases).

Heavy flavour fraction

At NLO, this fraction is stable across a wide range of scales.

dotted: LO solid: NLO exclusive

■ For a p_T cut of 15 GeV and $\mu \sim M_W$, we have:

$$\left[\frac{\sigma(Wb\bar{b})}{\sigma(W+2 \text{ jets})}\right]_{LO} = 1.16\%, \qquad \left[\frac{\sigma(Wb\bar{b})}{\sigma(W+2 \text{ jets})}\right]_{NLO} = 1.23\%$$

$b\bar{b}$ mass cut

- Such a cut would be helpful, if it could be experimentally enforced:
 - ⋆ It improves the massless approximation

 \star It reduces this background compared to, for example, $t\bar{t}$ production, since here the b's like to lie at low invariant mass.

LO
$$(m_b = 0)$$

LO $(m_b = 4.75)$
NLO $(m_b = 0)$

Shape comparisons

- Shapes of distributions are important in order to either:
 - \star make kinematic cuts to reduce the W+ jet backgrounds; or,
 - ⋆ to fit components of signal and background.

■ In particular, are the shapes of relevant distributions similar in the b-tagged and untagged samples? Is this only true at LO?

Kinematic distributions

■ NLO behaviour may provide clues to processes with more jets (\rightarrow relevant for $t\bar{t}$), especially for more inclusive variables such as $\sum E_T(\mathrm{jet})$ and $H_T = \sum_{\mathrm{event}} E_T$.

■ $Wb\bar{b}$ shape is relatively unchanged at NLO, compared to W+2 jets.

NLO predictions

 \blacksquare At NLO, there is a change of shape in the H_T distribution.

Lowest order Lowest order+jet NLO inclusive NLO exclusive

- This change is not entirely due to the extra W+3 jet events allowed in the inclusive sample.
- \blacksquare The p_T distribution of the hardest jet shows no change in shape.

Extra jet contribution

- In the NLO inclusive result, the contribution to the H_T distribution from W+3 jet events is negligible at small H_T and dominant at large H_T .
- Similar ratio for $Wb\bar{b}j$ to $Wb\bar{b}$.

Extra jet contribution to the jet p_T distribution is never dominant over this range.

Dynamical scale

■ This behaviour is somewhat altered if a dynamical scale $\mu = H_T$ is used both at LO and NLO

■ The shapes of both the $Wb\bar{b}$ and W+2 jet distributions change in the same way, leading to a result that is much more encouraging for a LO analysis.

PDF uncertainties

■ Total cross-section uncertainty:

$$Wbar{b}
ightarrow 2.5\%$$
 , $W+2j
ightarrow 1.5\%$.

■ Uncertainty in the $(Wb\bar{b}/W + 2 \text{ jet})$ ratio:

Heavy flavour fraction revisited

- Often the presence of two *b*-quarks in the final state is actually only inferred from a single *b*-tag
- In this case, there is another way of computing the theoretical cross-section. For instance, in the case of Z+ heavy favour:

■ Requires knowledge of *b*-quark pdf's, but compare to:

Z + b at NLO - Run II

JC, K. Ellis, F. Maltoni and S. Willenbrock, hep-ph/0312024

- $lacksquare p_T^{
 m jet} > 15$ GeV, $|\eta^{
 m jet}| < 2$
- $\sigma(Z + \text{ one } b \text{ tag}) = 20 \text{ pb}$
- Fakes from Z+ jet events are significant
- Prediction for ratio of Z+b to untagged $Z+\mathrm{jet}$ is 0.02 ± 0.004

 $q\bar{q} \to Z(b\bar{b})$

Experimental result

■ Based on 189 pb⁻¹ of data from Run II

Preliminary ratio of crosssections:

$$\frac{\sigma(Z+b)}{\sigma(Z+j)} = 0.024 \pm 0.07$$

compatible with the NLO prediction

Z+b process in the next version of MCFM will allow a much better comparison with the analysis

LHC expectations

- $ho_T^{
 m jet} > 15$ GeV, $|\eta^{
 m jet}| < 2.5$
- $\sigma(Z + \text{ one } b \text{ tag}) = 1 \text{ nb}$
- Fakes from Z+ jet events are much less significant and $q\bar{q}$ contribution is tiny
- This should allow a fairly clean measurement of heavy quark PDF's (currently, only derived perturbatively)

b-PDF uses

single-top
$$qb \rightarrow qtW$$

single-top
$$gb \rightarrow tW$$

inclusive Higgs

Calculational directions

- $\blacksquare W + 3.4$ jet cross-sections at NLO
 - New technology needed: probably not ready for Run II

Nagy and Soper, hep-ph/0308127 Giele and Glover, hep-ph/0402152

- Inclusion of b mass effects in $Wb\bar{b}$ and $Zb\bar{b}$
 - \star Technology available: some efforts are underway ... c.f. $Hb\bar{b}$

W. Beenakker et al., hep-ph/0211352 S. Dawson et al., hep-ph/0311216

- Merging of existing NLO calculations with a parton shower
 - \star Possible: MC@NLO has yet to be applied to W/Z+ jets
- Further study of recent ideas regarding parton showers (most promising in the short term)
 - * Matrix elements corrections CKKW, ...
 - How much of the effects of NLO are taken into account by combining matrix element calculations with parton showers?

F. Krauss et al.

Outlook

- The W+ jets channel (including heavy quarks) is very important for many studies in Run II.
- Unfortunately, for events with many jets we are limited to LO predictions for rates and distributions.
- However, there should be lots to learn from the NLO corrections that we know about. The highest multiplicity that is currently available is production of $Wb\bar{b}$ and W+2 jets.
- Implications for Run II analyses.
 - Results suggest that some relevant observables do not suffer from large NLO effects and we can proceed with more confidence in analyses based on LO tools.
 - \star However, beware of variables that change shape at NLO (H_T) .
 - ★ These statements are heavily dependent on scale choices.
- Further comparisons with parton shower approaches and data is the way forward.